Illustration par défaut

Publication of a new sky map containing thousands of galaxies unknown till now

Press release | Observatoire de Paris - PSL

Thanks to the LowFrequency Array (LOFAR) radiotelescope, an international team of scientists including astronomers at the Paris Observatory - PSL and the CNRS have published the first part of a huge sky map of the deep Universe. It includes hundreds of thousands of galaxies unknown till now, and throws new light on research areas such as the physics of black holes and the evolution of clusters of galaxies. A set of 26 papers devoted to these results are presented in a special issue of the journal Astronomy&Astrophysics dated February 19, 2019.

The LOFAR radio-telescope

Radio-telescopes detect very low energy radiation undetectable by the naked eye as well as any optical telescope. LOFAR is one of the largest radio-telescopes in the world. It in particular works at very low frequencies (from 10 to 250 megahertz) in a thus far practically unexplored energy range. It is made up of an array of one hundred thousand antennae distributed over Europe, and is directed by par ASTRON in the Low Countries.

LOFAR est un réseau européen de 100 000 antennes réparties en Europe dans 50 stations d’observation connectées entre elles par le réseau haut débit. Il est exploité par ASTRON aux Pays-Bas.
© ASTRON

The French part of the network is installed at Nançay, in the Cher region, within the radioastronomical observatory of the Paris Observatory (Observatoire de Paris - PSL/ CNRS / Université d’Orléans).

La partie française de LOFAR est implantée à Nançay, dans le Cher, au sein de la station de radioastronomie de l’Observatoire de Paris.
© Observatoire de Paris – PSL / USN

LOFAR produces gigantic quantities of data. Making an image using this antenna array involves inverting a gigantic set of thousands of equations. The Paris Observatory has played a central role in enabling the LOFAR data to be exploited.

The LoTSS survey

In this first sky map of the radio sky produced by LOFAR (baptized “LoTSS survey”), only 2,5% of the northern hemisphere has been published. This part already contains over three hundred thousand astrophysical objects : 90% of them were unknown till now. Some of these radio sources are so far that their radiation has been traveling for hundreds of thousands of years before reaching the LOFAR antennas.

La galaxie spirale M106 vue ici dans une image optique (issue du "Sloan Digital Sky Survey") superposée avec les émissions radio LOFAR (en jaune orangé).
Les structures radio brillantes au centre de la galaxie ne sont pas de véritables bras spiraux, mais seraient le résultat de l’activité du trou noir supermassif central de la galaxie.
© Cyril Tasse, Observatoire de Paris - PSL et l’équipe survey LOFAR

Low frequency radio radiation is emitted by extremely energetic charged particles which are slowed down by magnetic fields. Thus, a very large fraction of this light is emitted via energetic and sometimes violent processes.

Super massive black holes

The origin of the super-massive black holes which are in the cores of all galaxies, and whose mass can be as high as billions of solar masses, is still a mystery. When the mater is sucked up by a black hole

Galaxie abritant un noyau actif en son centre.
LOFAR permet d’étudier comment les trous noir injectent de grandes quantités d’énergie dans le milieux extragalactique. Ici, image d’une galaxie dont le trou noir central est actif et qui, dans son déplacement, laisse ses jets derrière elle, à la manière d’une étoile filante (on parle alors d’une radiogalaxie de type "tête-queue").
© Cyril Tasse, Observatoire de Paris - PSL et l’équipe survey LOFAR

When matter is sucked up by a super-massive black hole, jets of charged and very energetic particles are created and perturb the environment of the galaxy. Radio waves are then emitted. Radio observations of these objects enables one to study how super-massive black holes grow, and their role in the formation of galaxies.

Image LOFAR d’une galaxie radio superposée sur une image optique du ciel (issue du "Sloan Digital Sky Survey").
Lorsque de la matière chute dans le trou noir supermassif présent au centre de la galaxie, des particules sont accélérées à des vitesses proches de celle de la lumière pour former des jets émetteurs d’ondes radio.
© Cyril Tasse, Observatoire de Paris - PSL et l’équipe survey LOFAR

LOFAR reveals, for example, that the super-massive black holes associated with the most massive galaxies are always active, and that matter has been falling ceaselessly within them for billions of years. These images, produced by LOFAR, also enable one to study how the black holes regularly perturb the dynamics of the intergalactic medium.

Clusters of galaxies

We have known for several years that the shock waves created by the huge motions of the intergalactic medium can accelerate particles up to the very high energies needed to emit radio waves. In particular, when galaxy clusters (made up of hundreds or thousands of galaxies) collide, they produce radio emission which can spread over thousands of light years. This emission is abundantly observed by LOFAR, and constitutes an exceptionally good method to study the large scale dynamics and structure of the Universe.

Un amas de galaxies vu par LOFAR.
Cette image est extrêmement complexe à interpréter et montre toute la puissance de LOFAR. Des émissions diffuses sont associées aux immenses mouvements de la structure à grande échelle, alors que les jets des noyaux actifs de galaxies perturbent leurs environnements. On peut également voir sur la gauche une galaxie active de type "tête-queue" qui est possiblement éjecté de l’amas.
© Cyril Tasse, Observatoire de Paris - PSL et l’équipe survey LOFAR

Next steps

LOFAR has opened a new observational window on the deep Universe. The 26 papers published in the special issue of the journal Astronomy et Astrophysics concern only the first two percent of the sky map. Over and above the new scientific discoveries contained in this preliminary data, the novelty is the richness of these images. They contain new astrophysical objects whose nature has yet to be understood.

There will be many new scientific discoveries. The objective of the team is to create sensitive high resolution images of the whole of the northern hemisphere sky, which will have overall 15 million radio sources. It will take several years to fully exploit the total 48 petaoctets of data, which represents the equivalent of almost 40 Eiffel tower’s worth of DVDs. The final image should be available towards the year 2024. Since this energy domain has hardly been explored, the scientific impact of this huge survey is hard to assess. The project is eagerly supported by the French astronomical community. The construction of SKA in the southern hemisphere should start in 2020. French astronomers have built a trial model on the site of the Nançay radlio-astronomical station : named NenuFAR (New Extension in Nançay Upgrading LOFAR), together with LOFAR, it will prepare the French astronomical community for the use of SKA.