L’analyse récente d’une occultation stellaire (Figure 1) nous a permis de contraindre le rayon, l’aplatissement et la densité à une précision supérieure à celle obtenue lors du passage de la sonde Voyager-II près d’Uranus en 1986. Le rayon de Titania est en particulier déterminé à une précision sub-kilométrique, 788.4 ± 0.6 km. L’écart des mesures entre les observateurs, amateurs ou professionnels, peut être attribuée non à l’incertitude sur la méthode, mais à la topographie du satellite (Figure 2).

La spectroscopie dans le domaine du proche infrarouge indique la présence de glace d’eau et de glace de CO2 à la surface du Titania. Le rayonnement solaire pourrait être susceptible de produire une atmosphère ténue, saisonnière, issue de la sublimation de la glace de CO2. Nous avons pu établir une limite supérieure de 10 à 20 nanobars (1) de pression pour une telle atmosphère (Figure 3), ainsi que pour d’autres constituants tels CH4 ou N2, qui pourraient résulter de chauffage interne et cryovolcanisme (2), comme sur Encelade (satellite de Saturne) ou Triton (satellite de Neptune).

Ces valeurs, très faibles, démontrent la capacité de la méthode d’occultations pour contraindre la pression de surface d’un objet lointain à des niveaux mille fois inférieurs aux pressions actuellement mesurées sur Triton et Pluton. Cette précision est très prometteuse pour la recherche d’une éventuelle atmosphère autour d’un gros objet transneptunien (OTN), tels Eris, Makemake ou Quaoar, distants de 40 à 70 UA (3) : à la surface de ces objets on a identifié des glaces volatiles, qui pourraient sublimer lorsque le corps se trouve dans la partie de son orbite la plus proche du soleil. Or à cette distance les glaces sont pratiquement stables à l’échelle de l’âge du système solaire, et constituent un réservoir important pour la constitution d’une atmosphère.

Ces recherches sont conduites dans le cadre du programme ANR (Agence Nationale de la Recherche) Beyond Neptune en 2009-2012 (Observatoire de Paris-LESIA, SARL Shelyak Instruments (France), Observatoire de Haute-Provence, National Tsing Hua University, Taïwan), avec le soutien de l’Observatoire de Paris et du Programme national de planétologie (CNRS/INSU).
(1) 1 nanobar = 1 milliardième de la pression atmosphérique terrestre = 0,1 milli-pascal
(2) Le cryovolcanisme (ou volcanisme de glace) est l’éruption d’éléments volatils, à l’état liquide ou gazeux, accompagné ou non de particules solides, sous l’effet du chauffage interne d’une planète ou d’un satellite dont la surface est recouverte de glaces à très basse température (ex. Triton, Encelade).
(3) UA = unité astronomique = distance Soleil-Terre, 149,6 millions de km.
Référence
- Titania’s Radius and an Upper Limit on its Atmosphere from the September 8, 2001 Stellar Occultation T. Widemann, B. Sicardy, R. Dusser, C. Martinez, W. Beisker, E. Bredner, D. Dunham, P. Maley, E. Lellouch, J.-E. Arlot, J. Berthier, F. Colas, W.B. Hubbard, R. Hill, J. Lecacheux, J.-F. Lecampion, S. Pau, M. Rapaport, F. Roques, W. Thuillot, C.R. Hills, A.J. Elliott, R. Miles, T. Platt, C. Cremaschini, P. Dubreuil, C. Cavadore, C. Demeautis, P. Henriquet, O. Labrevoir, G. Rau, J.-F. Coliac, J. Piraux, Ch. Marlot, C. Marlot, F. Gorry, C. Sire, B. Bayle, E. Simian, A.M. Blommers, J. Fulgence, C. Leyrat, C. Sauzeaud, B. Stephanus, T. Rafaelli, C. Buil, R. Delmas, V. Desnoux, C. Jasinski, A. Klotz, D. Marchais, M. Rieugnié, G. Bouderand, J.-P. Cazard, C. Lambin, P.O. Pujat, F. Schwartz, P. Burlot, P. Langlais, S. Rivaud, E. Brochard, Ph. Dupouy, M. Lavayssière, O. Chaptal, K. Daiffallah, C. Clarasso-Llauger, J. Aloy Doménech, M. Gabaldá-Sánchez, X. Otazu-Porter, D. Fernández, E. Masana, A. Ardanuy, R. Casas, J.A. Ros, F. Casarramona, C. Schnabel, A. Roca, C. Labordena, O. Canales-Moreno, V. Ferrer, L. Rivas, J.L. Ortiz, J. Fernández-Arozena, L.L. Martín-Rodríguez, A. Cidadão, P. Coelho, P. Figuereido, R. Gonçalves, C. Marciano, R. Nunes, P. Ré, C. Saraiva, F. Tonel, J. Clérigo, C. Oliveira, C. Reis, B.M. Ewen-Smith, S. Ward, D. Ford, J. Gonçalves, J. Porto, J. Laurindo Sobrinho, F. Teodoro de Gois, M. Joaquim, J. Afonso da Silva Mendes, E. van Ballegoij, R. Jones, H. Callender, W. Sutherland, S. Bumgarner, M. Imbert, B. Mitchell, J. Lockhart, W. Barrow, D. Cornwall, A. Arnal, G. Eleizalde, A. Valencia,V. Ladino, T. Lizardo, C. Guillén, G. Sánchez, A. Peña, S. Radaelli, J. Santiago, K. Vieira, H. Mendt, P. Rosenzweig, O. Naranjo, O. Contreras, F. Díaz, E. Guzmán, F. Moreno, L. Omar Porras, E. Recalde, M. Mascaró, C. Birnbaum, R. Cósias, E. López, E. Pallo, R. Percz, D. Pulupa, X. Simbaña, A. Yajamín, P. Rodas, H. Denzau, M. Kretlow, P. Valdés Sada, R. Hernández, A. Hernández, B. Wilson, E. Castro, J.M. Winkel 2009, Icarus 199, Vol. 2, pp. 458-476 (February 2009).
Contact
- Thomas Widemann
Observatoire de Paris, LESIA, et Université de Versailles Saint-Quentin