Illustration par défaut

La surface du Soleil est aimantée

7 February 2020

Une récente compilation de plusieurs observations spectroscopiques de la surface du Soleil montre que la gradient de champ magnétique dans la direction verticale est de 3 Gauss par kilomètre, alors que dans la direction horizontale, il n’est que de 0,3 Gauss par km. Cela dénote un surprenant écart aux équations de Maxwell! Véronique Bommier, directeur de recherche à l’Observatoire de Paris, propose une solution au problème, en supposant une accumulation d’électrons dans la photosphère. Les protons, bien plus lourds, ne suivent pas, et il en résulte un champ électrique à l’intérieur du Soleil. Ce phénomène explique l’apparente contradiction des observations.

Pourquoi la météorologie solaire est beaucoup plus difficile et complexe que la météorologie terrestre, effectuée à partir de cartes et de modèles de prévision numérique ? Comme l’atmosphère du Soleil est un plasma, une matière chargée, en théorie nous devrions pouvoir utiliser les modèles de magnétohydrodynamique associés aux cartes de champ magnétique et de champ de vitesse à la surface du l’astre. Mais il semblerait que cela ne fonctionne pas très bien. Peut-être est-ce dû au fait que le champ magnétique que l’on mesure n’est pas celui que l’on croit.

L’article publié ce 6 février 2020 dans la revue Astronomy & Astrophysics par Véronique Bommier, de l’Observatoire de Paris, met en évidence une non-conservation du flux magnétique, ce qui suggère qu’en effet, le champ n’est pas égal à celui que l’on croit. Pour résoudre le problème, il faut supposer la présence d’une aimantation beaucoup plus importante que ce que donnent les modèles actuels du plasma de la surface solaire. Seul un champ magnétique bien plus fort serait compatible avec les équations de Maxwell. L’accumulation d’électrons libres venant de l’intérieur de l’astre, où la haute température couplée à la faible masse des
électrons leur fait échapper à la gravité et aux protons, pourrait expliquer cette aimantation. Un résultat qui permet d’envisager une modernisation de la prévision des éjections de matière solaire !

Example of a magnetic field reconstructed above the surface of the sun. The charged material will follow the lines of the magnetic field. What we observe is in fact the magnetic field H, and not the magnetic induction B which has a conserved flux according to the Maxwell equations. The difference between these two quantities is contained in the magnetization M, according to the law B = µ0 (H + M). However, the interactions between the field and the matter are the fact of the magnetic field H. It is thus H which is measured by the Zeeman effect of the magnetic field on the emitting atoms. The magnetization M can be considered as magnetic flux stored and hidden inside the material itself. And it is the induction B which governs the effects induced by the field on the matter’s motions (magneto-hydrodynamics). Until now, we thought it was B that was measured.

L’auteur de l’article, Véronique Bommier, Directeur de Recherche au CNRS, membre du laboratoire LESIA (Observatoire de Paris), a conduit de nombreuses observations avec le télescope solaire français THEMIS construit par le CNRS sur le site européen d’Izaña (île de Tenerife, Canaries, Espagne). L’interprétation de toutes ces observations lui a révélé ce phénomène.

Référence